Let us define logical operators $Z\left(c_{1}\right)$ and $X\left(\bar{c}_{1}\right)$
dual 1-chain
\rightarrow a) have to commute with all stabilizer generators
b) and be independent of them
a) $\longrightarrow \partial c_{1}=\partial \bar{c}_{1}=0$ (as $c_{1} \cdot \delta \nu_{k}=\partial c_{1} \cdot \nu_{k}=0$ and $\left.\overline{c_{1}} \cdot \partial f_{m}=\partial \overline{c_{1}} \cdot \bar{v}_{m}=0\right)$
b) c_{1} and \bar{c}_{1} are non-trivial cycles

\rightarrow define two pairs of logical Pauli operators

$$
\begin{aligned}
& \left\{L_{7}^{(1)}=Z\left(c_{1}^{(1)}\right), L_{x}^{(1)}=X\left(\bar{c}_{1}^{(1)}\right)\right\} \\
& \left\{L_{z}^{(2)}=Z\left(c_{1}^{(2)}\right), L_{x}^{(2)}=X\left(\bar{c}_{1}^{(2)}\right)\right\}
\end{aligned}
$$

Then

implies

$$
L_{z}^{(i)} L_{x}^{(j)}=(-1)^{\delta_{i j}} L_{x}^{(j)} L_{z}^{(i)}
$$

equivalent to Pauli operators for two quits.
Logical Pauli basis states are defined as follows:

$$
\begin{aligned}
& L_{z}^{(i)}\left|\psi_{z}\left(s_{1}, s_{2}\right)\right\rangle=(-1)^{s_{i}}\left|\psi_{z}\left(s_{1}, s_{2}\right)\right\rangle \\
& L_{x}^{(i)}\left|\psi_{x}\left(s_{1}, s_{2}\right)\right\rangle=(-1)^{s_{i}}\left|\psi_{x}\left(s_{1}, s_{2}\right)\right\rangle
\end{aligned}
$$

\longrightarrow number of stabilizer generators of the $n \times n$ square lattice on the torus is given by

$$
|F|+|\bar{F}|-2=|F|+|V|-2=2 n^{2}-2
$$

where the -2 comes from the fact that $\prod_{f_{m} \in F} A_{m}=I$ and $\prod_{\nu_{k} \in V} B_{k}=I$
(two non-independent operators)
\#qubits $=|E|=2 n^{2}$

$$
\begin{aligned}
\longrightarrow 2^{|E|-(|F|+|V|-2)}= & 2^{2} \text { - dimensional } \\
& \text { stabilizer subspace }
\end{aligned}
$$

The above properties hold for general tilings $G=(V, F, F)$
\rightarrow can define surface code for triangular, hexagonal etc. lattices have the constraint:

$$
|F|+|v|-|E|=2-2 g=-\chi_{s}
$$

\longrightarrow dimension stabilizer subspace

$$
=2^{|E|-(|F|+\mid V)-2)}=2^{2 g} \quad(2 g \text { quits) }
$$

Schrödinger picture:

$$
\begin{aligned}
& \left.\left|\psi_{z}\left(s_{1}, s_{2}\right)\right\rangle=Z\left(c_{1}^{(1)}\right)^{s_{1}} Z\left(c_{1}^{(2)}\right)^{s_{2}}\left(\prod_{v_{k \in V}} \frac{I+B_{k}}{2}\right) 10\right)^{\text {on }} \\
& \left.\left|\psi_{x}\left(s_{1}, s_{2}\right)\right\rangle=X\left(c^{(1)}\right)^{s_{1}} X\left(\bar{c}_{1}^{(2)}\right)^{s_{2}}\left(\prod_{f_{m} \in F} \frac{I+A_{m}}{2}\right) 1+\right\rangle^{\text {on }}
\end{aligned}
$$

2) Planar Surface Code define surface code on planar $n \times(n-1)$

We use relative homology to define logical operators: two chains c_{i} and $c_{!}$ are said to be (relative) nomologically equivalent if $c_{i}^{\prime}=c_{i}+\partial c_{i+1}+\gamma_{i}$, $J_{i} \in T_{i} \quad C C_{i}$
$Z\left(\gamma_{1}\right)$ and $X\left(F_{1}\right)$ are stabilizer operators \rightarrow action of homological operators equivalent
§3.4 Topological Quantum Error Correction back to surface code on torus
$\longrightarrow 2^{2 n^{2}-2}$ orthogonal subspaces (syndrome subspaces, eigenspaces of stabilizer generators)
\rightarrow can be utilized to identify location of errors Suppose the X and Z errors $X\left(c_{1}^{e}\right)$ and $Z\left(c_{1}^{e}\right)$ occur
$\rightarrow X\left(\bar{c}_{1}^{e}\right)$ and $Z\left(c_{1}^{e}\right)$ anticommute with A_{m} and B_{k} on the face $f_{m} \in \partial \bar{c}_{1}^{l}$ and vertex $\nu_{k} \in \partial c_{1}^{l}$

error syndrome specified by

$$
\partial c_{1}^{\ell}=c_{0}^{s}
$$

\rightarrow error syndrome specified by

$$
\partial \bar{c}_{1}^{l}=c_{2}^{5}
$$

More precisely, the error switcher the eigenvalues of stabilizer generators Am and B_{k} to $(-1)^{z_{m}^{s}}$ and $(-1)^{z_{k}^{s}}$ where

$$
c_{2}^{s}=\sum_{m} z_{m}^{s} f_{m}, c_{0}^{s}=\sum_{k} z_{k}^{s} \nu_{k}
$$

Error correction is the task of finding recovery 1 -chains ${\overline{C_{1}}}^{r}$ and $c_{1}{ }^{r}$ such that

$$
\partial\left(\bar{c}_{1}^{l}+\bar{c}_{1}^{r}\right)=0, \quad \partial\left(c_{1}^{l}+c_{1}^{r}\right)=0
$$

\rightarrow state is returned into code space by applying $X\left(C_{1}^{r}\right)$ and $Z\left(c_{1}^{r}\right)$
Suppose each Z error occurs with independent and identical probability p.
\rightarrow conditional probability of error $Z\left(c_{1}\right)$ with $c_{1}=\sum_{l} z_{e} \rho_{e}$:

$$
\begin{aligned}
P\left(c_{1} \mid c_{0}^{s}\right) & =\left.\underset{\prod_{l}}{\mathcal{N}} \prod_{l}\left(\frac{P}{1-p}\right)^{z_{e}}\right|_{\partial c_{1}=c_{0}^{3}} . \\
& \text { normalization }
\end{aligned}
$$

\rightarrow find a recovery chain by maximizing posterior probability

$$
c_{1}^{r} \equiv \arg \max _{c_{1}} P\left(c_{1} \mid c_{0}^{s}\right)=\left.\operatorname{argmin}\left(\sum_{l} z_{l}\right)\right|_{\partial c_{1}}=c_{0}^{3}
$$

"minimum distance decoding" If $c_{1}^{r}+c_{1}^{e}$ is trivial cycle, error correction succeeds
If $c_{1}^{r}+c_{1}^{e}$ is non-trivial cycle, we get logical error $Z\left(c_{1}^{r}+c_{1}^{e}\right) \sim L_{z}$

