Let us define logical operators
$$Z(C_1)$$

and $X(\overline{C_1})$
dual 1-chain
 $-\infty$ of have to commute with
all stabilizer generators
b) and be independent of them
a) $\rightarrow \partial C_1 = \partial \overline{C_1} = 0$ (as $C_1 \cdot \delta \mathcal{H}_n = \partial \overline{C_1} \cdot \mathcal{H}_n = 0$
and $\overline{C_1} \cdot \partial \overline{\mathcal{H}_n} = \partial \overline{C_1} \cdot \mathcal{H}_n = 0$
b) C_1 and $\overline{C_1}$ are non-trivial cycles
 $= define$ two pairs of logical Pauli
operators
 $\{L_2^{(1)} = Z(C_1^{(1)}), L_x^{(1)} = X(\overline{C_1}^{(1)})\}$
 $\{L_2^{(2)} = Z(C_1^{(2)}), L_x^{(2)} = X(\overline{C_1}^{(2)})\}$

Then
$$\overline{c}_{1}^{(2)}$$
 $\overline{c}_{1}^{(1)}$ $\overline{c}_{2}^{(1)}$ $\overline{c}_{3}^{(1)}$ $\overline{c}_{4}^{(1)}$
implies $L_{2}^{(1)}$ $L_{X}^{(1)} = (-1)^{S_{11}} L_{X}^{(1)} L_{2}^{(1)}$
equivalent to Pauli operators for
two qubits.
Logical Pauli basis states are defined
as follows:
 $L_{2}^{(1)} |\mathcal{H}_{2}(S_{11}, S_{2})\rangle = (-1)^{S_{1}} |\mathcal{H}_{2}(S_{11}, S_{2})\rangle$
 $L_{X}^{(1)} |\mathcal{H}_{X}(S_{1}, S_{2})\rangle = (-1)^{S_{1}} |\mathcal{H}_{X}(S_{11}, S_{2})\rangle$
 \longrightarrow number of stabilizer generators of
the nxn square lattice on the
torus is given by
 $|F| + |F| - 2 = |F| + |V| - 2 = 2n^{2} - 2$
where the -2 comes from the fact
that $\prod_{k \in V} A_{m} = I$ and $\prod_{k \in V} B_{k} = I$
(two non-independent operators)

qubits =
$$|E| = 2n^{2}$$

 $\Rightarrow 2^{|E|-(|F|+|V|-2)} = 2^{2} - dimensional$
stabilizer subspace
The above properties hold for
general tilings $G = (V|E, F)$
 \Rightarrow can define surface code for
triangular, hexagonal etc. lattices
have the constraint:
 $|F|+|V|-|E|=2-2g = -X_{S}$
 \Rightarrow dimension stabilizer subspace
 $= 2^{|E|-(|F|+|V|-2)} = 2^{2}g$ (2g qubits)
Schrödinger picture:
 $|Y_{2}(S_{1}, S_{2}) > = Z(c_{1}^{(1)})^{S_{1}}Z(c_{1}^{(2)})^{S_{2}} (\prod_{l \neq K} \frac{I+R_{N}}{2})|\delta|^{n^{2}}$
 $|Y_{X}(S_{1}, S_{2}) > = X(z^{(1)})^{S_{1}} X(z_{1}^{(0)})^{S_{2}} (\prod_{l \neq K} \frac{I+A_{m}}{2})|+|on^{2}$

2) Planar Surface Code define surface code on planar nx(n-1) square lattice C_1 γ, We use relative homology to define logical operators : two chains c; and c! are said to be (relative) homologically equivalent iff Ci = Ci + O Ci+,+ Zi, $\gamma_i \in [1]$; $C \subset i$ Z(Z) and X(Z) are stabilizer operators - action of homological operators quivalent

§ 3.4 Topological Quantum Error Correction
back to surface code on torus
→
$$2^{2n^2-2}$$
 orthogonal subspaces
(syndrome subspaces, eigenspaces
of stabilizer generators)
→ can be utilized to identify location
of errors Suppose the X and Z
errors X(ζ_1^e) and $Z(\zeta_1^e)$ occur
→ $X(\zeta_1^e)$ and $Z(\zeta_1^e)$ occur
→ $X(\zeta_1^e)$ and $Z(\zeta_1^e)$ actionmute
with Am and Bx on the
face fm $\varepsilon \supset \zeta_1^e$ and verter $v_x \varepsilon \supset \zeta_1^e$
 $Z_1^e = \zeta_2^o$
X(z) $Z_1^e = \zeta_2^o$
 $Z_1^e = \zeta_2^o$

More precisely, the error switches
the eigenvalues of stabilizer generators
Am and
$$B_K$$
 to $(-1)^{2m}$ and $(-1)^{2m}$
where
 $C_1^{S} = \sum_{m} \sum_{m}^{S} f_m, C_2^{S} = \sum_{m}^{S} \sum_{k}^{S} K$
Evror correction is the task of
finding recovery t-chains $\overline{C_1}^r$ and C_1^r
such that
 $\Im(\overline{C_1}^r + \overline{C_1}^r) = 0, \Im(C_1^{r+}C_1^r) = 0$
 \longrightarrow state is returned into code space
by applying $X(\overline{C_1}^r)$ and $\overline{Z(C_1^r)}$
Suppose each \overline{Z} error occurs with independent
and identical probability p .
 \longrightarrow conditional probability of error $\overline{Z(C_1)}$
with $C_1 = \sum_{k}^{T} \frac{2k}{2k} e_k :$
 $P(C_1 | C_2^r) = N \prod_{k}^{T} \left(\frac{1}{(1-p)}\right)^{2e} |_{\overline{Z}_1 = C_2^r}$

-> find a recovery chain by
maximizing posterior probability
$$C_i^r = arg \max_{C_i} P(c_i|c_i^s) = arg \min(\sum_{e \in e})|_{2c_i = c_i^s}$$

"minimum distance decoding"
If $C_i^r + C_i^e$ is trivial cycle, error
correction succeeds
If $C_i^r + C_i^e$ is non-trivial cycle,
we get logical error $Z(c_i^r+c_i^e) \sim L_2$